Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668106

RESUMO

Pervaporation is an energy-efficient alternative to conventional distillation for water/alcohol separations. In this work, a novel CHA zeolite membrane with an increased Si/Al ratio was synthesized in the absence of organic templates for the first time. Nanosized high-silica zeolite (SSZ-13) seeds were used for the secondary growth of the membrane. The separation performance of membranes in different alcohol-aqueous mixtures was measured. The effects of water content in the feed and the temperature on the separation performance using pervaporation and vapor permeation were also studied. The best membrane showed a water/ethanol separation factor above 100,000 and a total flux of 1.2 kg/(m2 h) at 348 K in a 10 wt.% water-ethanol mixed solution. A membrane with high performance and an increased Si/Al ratio is promising for the application of alcohol dehydration.

2.
Biomed Pharmacother ; 173: 116458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503241

RESUMO

Osteoarthritis (OA) is a multifaceted disease characterized by imbalances in extracellular matrix metabolism, chondrocyte and synoviocyte senescence, as well as inflammatory responses mediated by macrophages. Although there have been notable advancements in pharmacological and surgical interventions, achieving complete remission of OA remains a formidable challenge, oftentimes accompanied by significant side effects. Mesenchymal stem cells (MSCs) have emerged as a promising avenue for OA treatment, given their ability to differentiate into chondrocytes and facilitate cartilage repair, thereby mitigating the impact of an inflammatory microenvironment induced by macrophages. This comprehensive review aims to provide a concise overview of the diverse roles played by MSCs in the treatment of OA, while elucidating the underlying mechanisms behind these contributions. Specifically, the roles include: (a) Promotion of chondrocyte and synoviocyte regeneration; (b) Inhibition of extracellular matrix degradation; (c) Attenuating the macrophage-induced inflammatory microenvironment; (d) Alleviation of pain. Understanding the multifaceted roles played by MSCs in OA treatment is paramount for developing novel therapeutic strategies. By harnessing the regenerative potential and immunomodulatory properties of MSCs, it may be possible to devise more effective and safer approaches for managing OA. Further research and clinical studies are warranted to optimize the utilization of MSCs and realize their full potential in the field of OA therapeutics.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Sinoviócitos , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Matriz Extracelular
4.
Nano Lett ; 23(10): 4167-4175, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155570

RESUMO

Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.

5.
ACS Appl Mater Interfaces ; 15(13): 16853-16864, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972317

RESUMO

Cation-free zirconosilicate zeolite CHA and thin zirconia-supported membranes were in situ synthesized in a fluoride-free gel for the first time. The usage of the ZrO2/Al2O3 composite support inhibited the transportation of aluminum from the support into zeolite membranes. No fluorite source was used for the synthesis of cation-free zeolite CHA membranes, indicating the green property of the synthesis. The thickness of the membrane was only 1.0 µm. The best cation-free zeolite CHA membrane prepared by the green in situ synthesis displayed a high CO2 permeance of 1.1 × 10-6 mol/(m2 s Pa) and CO2/CH4 selectivity of 79 at 298 K and 0.2 MPa pressure drop for an equimolar CO2/CH4 mixture.

6.
J Hazard Mater ; 445: 130460, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462242

RESUMO

Endocrine disruptors (EDCs) such as bisphenol A (BPA) have many adverse effects on environment and human health. Laccase encapsulation immobilized in mesoporous ZIF-8 was prepared for efficient degradation of BPA. The ZIF-8 (PA) with highly ordered mesopores was synthesized using trimethylacetic acid (PA) as a template agent. On account of the improvement of skeletal stability by cross-linking agent glutaraldehyde, ZIF-8 (PA) realized laccase (FL) immobilization within the mesopores through encapsulation strategy. By replacing the template agent, the effect of pore size on the composite activity and immobilization efficiency by SEM characterization and kinetic analysis were investigated. Based on the physical protection of ZIF-8(PA) on laccase, as well as electrostatic interactions between substances and changes in surface functional groups (e.g. -OH, etc.), multifaceted enhancement including activity, stability, storability were engendered. FL@ZIF-8(PA) could maintain high activity in complex systems at pH 3-11, 10-70 °C or in organic solvent containing system, which exhibited an obvious improvement compared to free laccase and other reported immobilized laccase. Combined with TGA, FT-IR and Zeta potential analysis, the intrinsic mechanism was elaborated in detail. On this basis, FL@ZIF-8(PA) achieved efficient removal of BPA even under adverse conditions (removal rates all above 55% and up to 90.28%), and was suitable for a wide range of initial BPA concentrations. Combined with the DFT calculations on the adsorption energy and differential charge, the mesoporous could not only improve the enrichment performance of BPA on ZIFs, but also enhance the interaction stability. Finally, FL@ZIF-8(PA) was successfully applied to the degradation of BPA in coal industry wastewater. This work provides a new and ultra-high performances material for the organic pollution treatment in wastewater.


Assuntos
Enzimas Imobilizadas , Águas Residuárias , Humanos , Enzimas Imobilizadas/química , Lacase/metabolismo , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Memb Sci ; 661: 120885, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35966152

RESUMO

Airborne transmission of pathogens is the most probable cause for the spread of respiratory diseases, which can be intercepted by personal protective equipment such as masks. In this study, an efficient antiviral personal protective filter was fabricated by coupling the biocompatible curcumin (CCM) with nanofibrous polytetrafluoroethylene (PTFE) membrane. The CCM extracted from plants was first dissolved in acidified ethanol at a certain pH and temperature to optimize its loading concentration, antiviral activation, and binding forces on the polyethylene terephthalate (PET) support to form a pre-filtration layer at the front section of the filter. Ultrathin PTFE membrane was then fabricated on the antibacterial-antiviral PET support (A-A PET) by controllable heating lamination. This functional layer of the filter exhibits good gas permeance (3423.6 m3/(m2·h·kPa)) and ultrafine particles rejection rate (>98.79%). Moreover, the obtained A-A filter exhibit a high antibacterial rate against a variety of bacteria (E. coli, B. subtilis, A. niger, and Penicillium were 99.84%, 99.02%, 93.60%, 95.23%, respectively). Forthwith virucidal (SARS-CoV-2) efficiency of the A-A filter can reach 99.90% for 5 min. The filter shows good stability after 10 heating cycles, demonstrating its reusability.

8.
Nanoscale ; 14(28): 10091-10100, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792107

RESUMO

Carbon nanotubes (CNTs) with high degrees of uniformity, orientation and controlled dimensions on porous supports are highly desirable for various applications such as separation of O/W emulsions and air purification. In this work, CNTs were fabricated on silicon carbide (SiC) porous supports with different porosities and pore sizes by chemical vapor deposition (CVD). The growth processes of CNTs on the surface and in the pore channels of the SiC support were studied in detail. Based on microstructural characterization by SEM, Raman spectroscopy and TEM, it was found that these CNTs grown in the pore channels of SiC supports had a higher degree of orientation and purity than those grown on the surface due to the spatially confined effect. The growth processes of various types of CNTs on the microporous supports were proposed, which were further verified by CNTs with different steric configurations (S-CNTs and VACNTs) and on Al2O3 porous supports. Moreover, the contribution of CNTs in the pore channels to the filtration efficiency was demonstrated in oil-water emulsion separation and particle removal in air. This work provides significant guidance for the preparation and filtration application of CNTs on porous materials.

9.
Membranes (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448374

RESUMO

The removal of volatile organic compounds (VOCs) from wastewater containing nonvolatile salts has become an important and interesting case of the application of the pervaporation (PV) process. The aim of this study was to evaluate the influence of salts on the PV removal of ethyl acetate from wastewater using a polydimethylsiloxane (PDMS) membrane. The fouled membrane was then characterized via scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) to investigate salt permeation. The membrane backflushing process was carried out by periodically flushing the permeate side of the tubular membrane. The results demonstrated that salts (NaCl and CaCl2) could permeate through the PDMS membrane and were deposited on the permeate side. The presence of salts in the feed solution caused a slight increase in the membrane selectivity and a decrease in the permeate flux. The flux decreased with increasing salt concentration, and a notable effect occurred at higher feed-salt concentrations. A permeate flux of up to 98.3% of the original flux was recovered when the permeation time and backflushing duration were 30 and 5 min, respectively, indicating that the effect of salt deposition on flux reduction could be mitigated. Real, organic, saline wastewater was treated in a pilot plant, which further verified the feasibility of wastewater PV treatment.

10.
ACS Appl Mater Interfaces ; 14(18): 21198-21206, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475613

RESUMO

The reproducible fabrication of large-area zeolite membranes for gas separation is still a great challenge. We report the scalable fabrication of high-performance zeolite MFI membranes by single-step secondary growth on the 19-channel alumina monoliths for the first time. The packing density and mechanical strength of the monolithic membranes are much higher for these than for tubular ones. Separation performance of the monolithic membranes toward the butane isomer mixture was comparably evaluated using the vacuum and Wicke-Kallenbach modes. The n-butane permeances and n-butane/i-butane separation factors for the three membranes with an effective area of ∼84 cm2 were >1.0 × 10-7 mol (m2 s Pa)-1 and >50 at 343 K for an equimolar n-butane/i-butane mixture, respectively. We succeeded in scaling up the membrane synthesis with the largest area of 270 cm2 to date which has 1.3 times the area of an industrial 1 m long tubular membrane. Monolith supported zeolite MFI membranes show great potential for industrial n-butane/i-butane separation.

11.
Water Res ; 216: 118270, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339967

RESUMO

Both the pore size and surface properties of silicon carbide (SiC) membranes are demonstrated to significantly affect their separation efficiency when used for oily water treatment. However, the potential influences of open porosity together with the pore size of SiC membranes on their surface properties and oil-water separation performance have rarely been investigated. In this work, porous SiC ceramic membranes with tunable open porosity and pore size were purposely prepared and selected to systematically study the effect of pore structure-dependent wettability on the oil-water separation performance. The measured pure water flux of selected membranes as a function of open porosity (34-48%) and pore size (0.43-0.67 µm) was well-fitted by using a modified H-P equation. Interestingly, the hydrophilicity of SiC membranes was improved with the increase in open porosity and pore size, as evidenced by the gradually decreased dynamic water contact angle and underwater adhesion of oil droplets. Further, the open porosity of SiC membranes was found to contribute more to the improved surface wettability. As a result, the stable flux of SiC membranes in oil-in-water (O/W) emulsions was increased by 24% with the increased open porosity while the oil rejection rate remained above 90%. This work quantitatively reveals the contributions of the pore structure to the surface wettability of ceramic membranes, and thus provides an effective pathway to improve their performance in oil-water separation.

12.
Front Chem Sci Eng ; 16(5): 561-563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280075
13.
Curr Med Imaging ; 18(8): 869-875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34819009

RESUMO

INTRODUCTION: To investigate the Computed Tomography (CT) imaging characteristics and dynamic changes of COVID-19 pneumonia at different stages. METHODS: Forty-six patients infected with COVID-19 who had chest CT scans were enrolled, and CT scans were performed 4-6 times with an interval of 2-5 days. RESULTS: At the early stage (n=25), ground glass opacity was presented in 11 patients (11/25 or 44.0 %) and ground glass opacity mixed with consolidation in 13 (13/25 or 52.0 %) in the lung CT images. At the progressive stage (n=38), ground glass opacity was presented in only one patient (1/38 or 2.6 %) and ground glass opacity mixed with consolidation in 33 (33/38 or 86.8 %). In the early improvement stage (n=38), the imaging presentation was ground glass opacity alone in three patients (3/38 or 7.9 %) and ground glass opacity mixed with consolidation in 34 (34/38 or 89.5 %). In the late improvement (absorption) stage (n=33), the primary imaging presentation was ground glass presentation in eight patients (8/33 or 24.2 %) and ground glass opacity mixed with consolidation in 23 (23/33 or 69.7 %). The lesion reached the peak at 4-16 days after disease onset, and 26 (26/38 or 68.4 %) patients reached the disease peak within ten days. Starting from 6 to 20 days after onset, the disease began to be improved, with 30 (30/38 or 78.9 %) patients being improved within 15 days. CONCLUSION: COVID-19 pneumonia will progress to the peak stage at a mediate time of seven days and enter the improvement stage at twelve days. Computed tomography imaging of the pulmonary lesion has a common pattern from disease onset to improvement and recovery and provides important information for evaluation of the disease course and treatment effect.


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Progressão da Doença , Humanos , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
14.
ACS Appl Mater Interfaces ; 13(51): 60763-60788, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913668

RESUMO

Membranes with asymmetric wettability have attracted significant interest by virtue of their unique transport characteristics and functionalities arising from different wetting behaviors of each membrane surface. The cross-sectional wettability distinction enables a membrane to realize directional liquid transport or multifunction integration, resulting in rapid advance in applications, such as moisture management, fog collection, oil-water separation, and membrane distillation. Compared with traditional homogeneous membranes, these membranes possess enhanced transport performance and higher separation efficiency owing to the synergistic or individual effects of asymmetric wettability. This Review covers the recent progress in fabrication, transport mechanisms, and applications of electrospun membranes with asymmetric wettability and provides a perspective on future development in this important area.

15.
Chin J Chem Eng ; 36: 1-9, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33250602

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has led to a great demand on the personal protection products such as reusable masks. As a key raw material for masks, meltblown fabrics play an important role in rejection of aerosols. However, the electrostatic dominated aerosol rejection mechanism of meltblown fabrics prevents the mask from maintaining the desired protective effect after the static charge degradation. Herein, novel reusable masks with high aerosols rejection efficiency were fabricated by the introduction of spider-web bionic nanofiber membrane (nano cobweb-biomimetic membrane). The reuse stability of meltblown and nanofiber membrane mask was separately evaluated by infiltrating water, 75% alcohol solution, and exposing under ultraviolet (UV) light. After the water immersion test, the filtration efficiency of meltblown mask was decreased to about 79%, while the nanofiber membrane was maintained at 99%. The same phenomenon could be observed after the 75% alcohol treatment, a high filtration efficiency of 99% was maintained in nanofiber membrane, but obvious negative effect was observed in meltblown mask, which decreased to about 50%. In addition, after long-term expose under UV light, no filtration efficiency decrease was observed in nanofiber membrane, which provide a suitable way to disinfect the potential carried virus. This work successfully achieved the daily disinfection and reuse of masks, which effectively alleviate the shortage of masks during this special period.

16.
Nano Lett ; 20(11): 8185-8192, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125239

RESUMO

Highly permselective nanostructured membranes are desirable for the energy-efficient molecular sieving on the subnanometer scale. The nanostructure construction and charge functionalization of the membranes are generally carried out step by step through the conventional layer-by-layer coating strategy, which inevitably brings about a demanding contradiction between the permselective performance and process efficiency. For the first time, we report the concurrent construction of the well-defined molecular sieving architectures and tunable surface charges of nanofiltration membranes through precisely controlled release of the nanocapsule decorated polyethyleneimine and carbon dioxide. This novel strategy not only substantially shortens the fabrication process but also leads to impressive performance (permeance up to 37.4 L m-2 h-1 bar-1 together with a rejection 98.7% for Janus Green B-511 Da) that outperforms most state-of-art nanofiltration membranes. This study unlocks new avenues to engineer next-generation molecular sieving materials simply, precisely, and cost efficiently.

17.
Ital J Pediatr ; 46(1): 153, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054802

RESUMO

BACKGROUND: Pediatric COVID-19 is relatively mild and may vary from that in adults. This study was to investigate the epidemic, clinical, and imaging features of pediatric COVID-19 pneumonia for early diagnosis and treatment. METHODS: Forty-one children infected with COVID-19 were analyzed in the epidemic, clinical and imaging data. RESULTS: Among 30 children with mild COVID-19, seven had no symptoms, fifteen had low or mediate fever, and eight presented with cough, nasal congestion, diarrhea, headache, or fatigue. Among eleven children with moderate COVID-19, nine presented with low or mediate fever, accompanied with cough and runny nose, and two had no symptoms. Significantly (P < 0.05) more children had a greater rate of cough in moderate than in mild COVID-19. Thirty children with mild COVID-19 were negative in pulmonary CT imaging, whereas eleven children with moderate COVID-19 had pulmonary lesions, including ground glass opacity in ten (90.9%), patches of high density in six (54.5%), consolidation in three (27.3%), and enlarged bronchovascular bundles in seven (63.6%). The lesions were distributed along the bronchus in five patients (45.5%). The lymph nodes were enlarged in the pulmonary hilum in two patients (18.2%). The lesions were presented in the right upper lobe in two patients (18.1%), right middle lobe in one (9.1%), right lower lobe in six (54.5%), left upper lobe in five (45.5%), and left lower lobe in eight (72.7%). CONCLUSIONS: Children with COVID-19 have mild or moderate clinical and imaging presentations. A better understanding of the clinical and CT imaging helps ascertaining those with negative nucleic acid and reducing misdiagnosis rate for those with atypical and concealed symptoms.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Pulmão/diagnóstico por imagem , Pandemias , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adolescente , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/epidemiologia , Erros de Diagnóstico , Feminino , Humanos , Lactente , Masculino , Pneumonia Viral/epidemiologia , SARS-CoV-2
18.
Small ; 16(41): e2002836, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964691

RESUMO

Precise molecular and ion separations depend largely on the size and uniformity of the nanochannels in a defect-free microporous nanofilm. Ordered and perpendicular nanochannels with uniform pore size are assembled into a continuous and defect-free film by a "gel nuclei-less" route. The ultrathin (<50 nm) zeolite nanosheets seeding layer induces the formation of defect-free zeolite nanofilms (500-800 nm) with preferential [100] orientation well-aligned to the transport pathway. The large-area and thin silicoaluminophosphate-34 (SAPO-34) nanofilm consisting of uniform and straight nanochannels shows a milestone CO2 permeance of ≈1.0 × 10-5 mol (m2 s Pa)-1 and high CO2 /CH4 and CO2 /N2 selectivities of 135 and 41 in equimolar binary mixtures at room temperature and 0.2 MPa feed pressure, respectively. These results suggest that highly oriented and thin SAPO-34 nanofilms prepared from nanosheets might have great potential for CO2 capture from natural gas, biogas, and flue gas.

20.
Water Sci Technol ; 79(12): 2279-2288, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31411582

RESUMO

A new type of iron-copper-carbon (Fe-Cu-C) ternary micro-electrolysis filler was prepared with a certain proportion of iron powder, activated carbon, bentonite, copper powder, etc. The effect of the new type of micro-electrolysis filler on the simulated methyl orange dye wastewater was studied. The effects of various operational parameters, such as reaction time, initial pH value, aeration rate, filler dose and reaction temperature, on the degradation rate of methyl orange were studied to determine the optimum treatment conditions, and the micro-electrolysis filler was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experimental results show that the degradation rate of 220 mL of simulated dye wastewater with a concentration of 100 mg/L reached 93.41% ± 2.94% after 60 mL/min of aeration, with an initial pH = 2, a dose of 45 g and 125 minutes of reaction at room temperature. The new micro-electrolysis filler has a high degradation rate for methyl orange solution, which is attributed to the iron and activated carbon particles sintered into an integrated structure, which makes the iron and carbon difficult to separate and affects the galvanic cell reaction. The addition of copper also greatly increases the transmission efficiency of electrons, which promotes the reaction. In addition, the surface iron is consumed, the adjacent carbon is stripped layer by layer, and the new micro-electrolytic filler does not easily passivate and agglomerate during its use.


Assuntos
Compostos Azo , Eliminação de Resíduos Líquidos , Águas Residuárias , Carvão Vegetal , Eletrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...